方陣與矩陣的區(qū)別
回答
愛揚教育
2022-06-13
- 矩陣和方陣的區(qū)別 推薦度:
- 相關(guān)推薦
擴展資料
一、只是形式不同:
1、 方陣就是特殊的矩陣,當(dāng)矩陣的行數(shù)與列數(shù)相等的時候,稱它為方陣。
2、矩陣(Matrix):一個按照長方陣列排列的復(fù)數(shù)或?qū)崝?shù)集合,最早來自于方程組的系數(shù)及常數(shù)所構(gòu)成的方陣。這一概念由19世紀英國數(shù)學(xué)家凱利首先提出。
3、元素是實數(shù)的矩陣稱為實矩陣,元素是復(fù)數(shù)的矩陣稱為復(fù)矩陣。而行數(shù)與列數(shù)都等于n的矩陣稱為n階矩陣或n階方陣 。
矩陣的運算是數(shù)值分析領(lǐng)域的重要問題。將矩陣分解為簡單矩陣的組合可以在理論和實際應(yīng)用上簡化矩陣的運算。對一些應(yīng)用廣泛而形式特殊的矩陣,例如稀疏矩陣和準對角矩陣,有特定的快速運算算法。關(guān)于矩陣相關(guān)理論的發(fā)展和應(yīng)用,請參考《矩陣理論》。
在天體物理、量子力學(xué)等領(lǐng)域,也會出現(xiàn)無窮維的矩陣,是矩陣的一種推廣。