拉格朗日中值定理的證明
回答
愛(ài)揚(yáng)教育
2022-06-21
- 相關(guān)推薦
擴(kuò)展資料
拉格朗日中值定理又稱拉氏定理,是微分學(xué)中的基本定理之一,它反映了可導(dǎo)函數(shù)在閉區(qū)間上的整體的平均變化率與區(qū)間內(nèi)某點(diǎn)的局部變化率的關(guān)系。拉格朗日中值定理是羅爾中值定理的推廣,同時(shí)也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一階展開)。
法國(guó)數(shù)學(xué)家拉格朗日于1797年在其著作《解析函數(shù)論》的第六章提出了該定理,并進(jìn)行了初步證明,因此人們將該定理命名為拉格朗日中值定理。