如何判斷一階偏導數連續(xù)
回答
愛揚教育
2022-06-21
- 相關推薦
先用定義求出該點的偏導數值c,再用求導公式求出不在該點時的偏導數fx(x,y),最后求fx(,x,y)當(x,y)趨于該點時的極限,如果limfx(x,y)=c,即偏導數連續(xù),否則不連續(xù)。
擴展資料
1、偏導數的求法:
當函數 z=f(x,y) 在 (x0,y0)的兩個偏導數 f'x(x0,y0) 與 f'y(x0,y0)都存在時,我們稱 f(x,y) 在 (x0,y0)處可導。如果函數 f(x,y) 在域 D 的每一點均可導,那么稱函數 f(x,y) 在域 D 可導。
此時,對應于域 D 的每一點 (x,y) ,必有一個對 x (對 y )的偏導數,因而在域 D 確定了一個新的二元函數,稱為 f(x,y) 對 x (對 y )的偏導函數。簡稱偏導數。
按偏導數的定義,將多元函數關于一個自變量求偏導數時,就將其余的自變量看成常數,此時他的求導方法與一元函數導數的求法是一樣的。
2、偏導數的幾何意義:
偏導數 f'x(x0,y0) 表示固定面上一點對 x 軸的切線斜率;偏導數 f'y(x0,y0) 表示固定面上一點對 y 軸的切線斜率。
高階偏導數:如果二元函數 z=f(x,y) 的偏導數 f'x(x,y) 與 f'y(x,y) 仍然可導,那么這兩個偏導函數的偏導數稱為 z=f(x,y) 的二階偏導數。二元函數的二階偏導數有四個:f"xx,f"xy,f"yx,f"yy。
注意:
f"xy與f"yx的區(qū)別在于:前者是先對 x 求偏導,然后將所得的偏導函數再對 y 求偏導;后者是先對 y 求偏導再對 x 求偏導。當 f"xy 與 f"yx 都連續(xù)時,求導的結果與先后次序無關。