国产欧美白嫩精品,精品思思久久99热网,亚洲国产成在线网站91,国产欧美一区二区三区户外

  • <strike id="uqc0k"></strike>
    <ul id="uqc0k"></ul>
  • <delect id="uqc0k"><s id="uqc0k"></s></delect><ul id="uqc0k"><acronym id="uqc0k"></acronym></ul>
    <center id="uqc0k"><source id="uqc0k"></source></center>
  • <strike id="uqc0k"><noscript id="uqc0k"></noscript></strike>
    <center id="uqc0k"></center>

    如何判斷一階偏導數連續(xù)

    回答
    愛揚教育

    2022-06-21

    • 相關推薦
    偏導數連續(xù)證明方法:
    先用定義求出該點的偏導數值c,再用求導公式求出不在該點時的偏導數fx(x,y),最后求fx(,x,y)當(x,y)趨于該點時的極限,如果limfx(x,y)=c,即偏導數連續(xù),否則不連續(xù)。

    擴展資料

      1、偏導數的求法:

      當函數 z=f(x,y) 在 (x0,y0)的兩個偏導數 f'x(x0,y0) 與 f'y(x0,y0)都存在時,我們稱 f(x,y) 在 (x0,y0)處可導。如果函數 f(x,y) 在域 D 的每一點均可導,那么稱函數 f(x,y) 在域 D 可導。

      此時,對應于域 D 的每一點 (x,y) ,必有一個對 x (對 y )的偏導數,因而在域 D 確定了一個新的二元函數,稱為 f(x,y) 對 x (對 y )的偏導函數。簡稱偏導數。

      按偏導數的定義,將多元函數關于一個自變量求偏導數時,就將其余的自變量看成常數,此時他的求導方法與一元函數導數的求法是一樣的。

      2、偏導數的幾何意義:

      偏導數 f'x(x0,y0) 表示固定面上一點對 x 軸的切線斜率;偏導數 f'y(x0,y0) 表示固定面上一點對 y 軸的切線斜率。

      高階偏導數:如果二元函數 z=f(x,y) 的偏導數 f'x(x,y) 與 f'y(x,y) 仍然可導,那么這兩個偏導函數的偏導數稱為 z=f(x,y) 的二階偏導數。二元函數的二階偏導數有四個:f"xx,f"xy,f"yx,f"yy。

      注意:

      f"xy與f"yx的區(qū)別在于:前者是先對 x 求偏導,然后將所得的偏導函數再對 y 求偏導;后者是先對 y 求偏導再對 x 求偏導。當 f"xy 與 f"yx 都連續(xù)時,求導的結果與先后次序無關。