連續(xù)且可導(dǎo)的條件
回答
愛揚教育
2022-06-21
- 相關(guān)推薦
1、函數(shù)在該點的去心鄰域內(nèi)有定義。
2、函數(shù)在該點處的左、右導(dǎo)數(shù)都存在。
3、左導(dǎo)數(shù)=右導(dǎo)數(shù)
注:這與函數(shù)在某點處極限存在是類似的。
擴展資料
不是所有的函數(shù)都有導(dǎo)數(shù),一個函數(shù)也不一定在所有的點上都有導(dǎo)數(shù)。若某函數(shù)在某一點導(dǎo)數(shù)存在,則稱其在這一點可導(dǎo),否則稱為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。
對于可導(dǎo)的函數(shù)f(x),xf'(x)也是一個函數(shù),稱作f(x)的導(dǎo)函數(shù)(簡稱導(dǎo)數(shù))。尋找已知的函數(shù)在某點的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過程稱為求導(dǎo)。實質(zhì)上,求導(dǎo)就是一個求極限的過程,導(dǎo)數(shù)的四則運算法則也來源于極限的四則運算法則。
反之,已知導(dǎo)函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導(dǎo)和積分是一對互逆的操作,它們都是微積分學(xué)中最為基礎(chǔ)的概念。