高數(shù)級數(shù)
回答
愛揚教育
2022-03-16
- 相關(guān)推薦
級數(shù)理論是分析學(xué)的一個分支;它與另一個分支微積分學(xué)一起作為基礎(chǔ)知識和工具出現(xiàn)在其余各分支中。二者共同以極限為基本工具,分別從離散與連續(xù)兩個方面,結(jié)合起來研究分析學(xué)的對象,即變量之間的依賴關(guān)系──函數(shù)。
擴(kuò)展資料
級數(shù)是研究函數(shù)的一個重要工具,在理論上和實際應(yīng)用中都處于重要地位,這是因為:一方面能借助級數(shù)表示許多常用的非初等函數(shù),微分方程的解就常用級數(shù)表示;另一方面又可將函數(shù)表為級數(shù),從而借助級數(shù)去研究函數(shù),例如用冪級數(shù)研究非初等函數(shù),以及進(jìn)行近似計算等。
正項級數(shù)代表著收斂性最簡單的情形。在這種情形,級數(shù)級數(shù)的部分和 sm=u1+u2+…+um隨著m單調(diào)增長,等價于級數(shù)的一般項un≥0(因此,有時也稱為非負(fù)項級數(shù))。于是級數(shù)(∑un)收斂等價于部分和(sm)有界。項越小,部分和就越傾向于有界。
同樣,每項比前項的比值較小,部分和也就增加較少而較傾向于有界,因此正項級數(shù)又有比值判別法。事實上,這都在于斷定un的大小數(shù)量級。